

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR

Module Title

Metabolism			
Reference	AS2029	Version	5
Created	March 2018	SCQF Level	SCQF 8
Approved	May 2011	SCQF Points	15
Amended	July 2018	ECTS Points	7.5

Aims of Module

To provide students with a detailed, integrated and applied knowledge and understanding of biochemistry including the principles of biochemistry and integration of knowledge acquired in physiology and nutrition with biochemistry.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Explain carbohydrate, lipid, protein and amino acid metabolism in well fed and fasting states, with particular regard to energy provision.
- 2 Explain the synthesis of proteins, nucleic acids, and fatty acids.
- 3 Explain metabolic integration across organs and tissues in different environmental conditions, with particular regard to energy provision.
- 4 Explain the importance of micronutrients to metabolism.
- 5 Analyse, interpret and report scientific data acquired in laboratory practicals.

Indicative Module Content

Introduction to the cellular and molecular basis of disease; factors affecting biochemical measurements and reference standards; evaluation and interpretation of relevant biochemical and medical data for complex conditions; metabolic effects of common clinical conditions relating to over nutrition, under nutrition and metabolic stress. Major metabolic pathways; glycolysis; gluconeogenesis; glycogenesis; glycogenolysis; pentose phosphate pathway; tricarboxylic acid cycle; electron transport chain; fatty acid oxidation; fatty acid synthesis; lipogenesis; lipolysis; ketogenesis; cholesterol synthesis; lipoprotein metabolism; deamination; transamination; urea cycle; amino acid biosynthesis and catabolism; nucleotide biosynthesis and catabolism; genetic code; replication; transcription; translation; metabolic control; metabolic integration; metabolic adaptation; disordered metabolism.

Module Delivery

Theoretical material is delivered by lectures and web based materials, supported by tutorials and laboratory practicals.

	Module Ref:	AS2029) v5
Indicative Student Workload		Full Time	Part Time
Contact Hours		45	N/A
Non-Contact Hours		105	N/A
Placement/Work-Based Learning Experience [Notional] Hours		N/A	N/A
TOTAL		150	N/A
Actual Placement hours for professional, statutory or regulatory bo	dy		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Туре:	Examination	Weighting:	100%	Outcomes Assessed:	1, 2, 3, 4, 5
Description:	Component 1 is an unseen closed book examination.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

This module is assessed using the one component of assessment as detailed in the Assessment Plan. To pass this module, students must achieve a module grade D or better.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A mark for C1 of 70% or more.
В	A mark for C1 between 60 and 69%.
С	A mark for C1 between 50 and 59%.
D	A mark for C1 between 40 and 49%.
E	MARGINAL FAIL. A mark for C1 between 35 and 39%.
F	FAIL. A mark for C1 of less than 35%.
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	AS1026 Biomolecular Science (or equivalent), in addition to successful completion of Stage 1 or equivalent.
Corequisites for module	None.
Precluded Modules	None.

Module Ref: AS2029 v5

INDICATIVE BIBLIOGRAPHY

- 1 BAYNES, J.W. and DOMINICZAK, M.H., 2018. *Medical biochemistry*, 5th ed. St Louis: Elsevier Health.
- 2 BENDER, D.A.and CUNNINGHAM, S.M.C., 2021. *Introduction to nutrition and metabolism*, 6th ed. Boca Raton, Fla: CRC Press.
- 3 DEVLIN, T.M., 2010. Textbook of biochemistry with clinical correlations, 7th ed. New York: Wiley-Liss.
- 4 FRAYN, K.N. and EVANS, R.D., 2019. *Metabolic regulation: a human perspective*, 4th ed. Oxford: Wiley-Blackwell.
- 5 LIEBERMAN, M. and MARKS, A., 2017. *Marks' basic medical biochemistry: a clinical approach*, 5th ed. Philadelphia: Lippincott, Williams and Wilkins.